This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/point_set_range_composite" #include <cstdint> #include <iostream> #include <tuple> #include <utility> #include "examples/segment_tree.hpp" #include "examples/macros.hpp" using namespace std; template <int32_t MOD> struct linear_function_monoid { typedef pair<int64_t, int64_t> value_type; value_type unit() const { return make_pair(1, 0); } value_type mult(value_type g, value_type f) const { int64_t a = (f.first * g.first) % MOD; int64_t b = (f.first * g.second + f.second) % MOD; return make_pair(a, b); } }; constexpr int32_t MOD = 998244353; int main() { int n, q; cin >> n >> q; segment_tree<linear_function_monoid<MOD> > segtree(n); REP (i, n) { int64_t a, b; cin >> a >> b; segtree.point_set(i, make_pair(a, b)); } REP (i, q) { int f, x, y, z; cin >> f >> x >> y >> z; if (f == 0) { segtree.point_set(x, make_pair(y, z)); } else if (f == 1) { int64_t a, b; tie(a, b) = segtree.range_concat(x, y); cout << (a * z + b) % MOD << endl; } } return 0; }
#line 1 "examples/segment_tree.point_set_range_composite.test.cpp" #define PROBLEM "https://judge.yosupo.jp/problem/point_set_range_composite" #include <cstdint> #include <iostream> #include <tuple> #include <utility> #line 2 "examples/segment_tree.hpp" #include <cassert> #include <vector> /** * @brief a Segment Tree (generalized with monoids) * @tparam Monoid is a monoid; commutativity is not required * @see https://en.wikipedia.org/wiki/Segment_tree */ template <class Monoid> struct segment_tree { typedef typename Monoid::value_type value_type; const Monoid mon; int n; std::vector<value_type> a; segment_tree() = default; segment_tree(int n_, const Monoid & mon_ = Monoid()) : mon(mon_) { n = 1; while (n < n_) n *= 2; a.resize(2 * n - 1, mon.unit()); } /** * @brief set $a_i$ as b in $O(\log n)$ * @arg i is 0-based */ void point_set(int i, value_type b) { assert (0 <= i and i < n); a[i + n - 1] = b; for (i = (i + n) / 2; i > 0; i /= 2) { // 1-based a[i - 1] = mon.mult(a[2 * i - 1], a[2 * i]); } } /** * @brief compute $a_l \cdot a _ {l + 1} \cdot ... \cdot a _ {r - 1}$ in $O(\log n)$ * @arg l, r are 0-based */ value_type range_concat(int l, int r) { assert (0 <= l and l <= r and r <= n); value_type lacc = mon.unit(), racc = mon.unit(); for (l += n, r += n; l < r; l /= 2, r /= 2) { // 1-based loop, 2x faster than recursion if (l % 2 == 1) lacc = mon.mult(lacc, a[(l ++) - 1]); if (r % 2 == 1) racc = mon.mult(a[(-- r) - 1], racc); } return mon.mult(lacc, racc); } }; #line 2 "examples/macros.hpp" #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) begin(x), end(x) #line 8 "examples/segment_tree.point_set_range_composite.test.cpp" using namespace std; template <int32_t MOD> struct linear_function_monoid { typedef pair<int64_t, int64_t> value_type; value_type unit() const { return make_pair(1, 0); } value_type mult(value_type g, value_type f) const { int64_t a = (f.first * g.first) % MOD; int64_t b = (f.first * g.second + f.second) % MOD; return make_pair(a, b); } }; constexpr int32_t MOD = 998244353; int main() { int n, q; cin >> n >> q; segment_tree<linear_function_monoid<MOD> > segtree(n); REP (i, n) { int64_t a, b; cin >> a >> b; segtree.point_set(i, make_pair(a, b)); } REP (i, q) { int f, x, y, z; cin >> f >> x >> y >> z; if (f == 0) { segtree.point_set(x, make_pair(y, z)); } else if (f == 1) { int64_t a, b; tie(a, b) = segtree.range_concat(x, y); cout << (a * z + b) % MOD << endl; } } return 0; }